Top articles
-
Spidrons de pentagone
L'hexagone et l'octogone avaient un nombre pair de sommets ; essayons avec un polygone régulier ayant un nombre impair de sommet ; prenons un pentagone : Relions ses sommets (en sautant un sommet à chaque fois) ; dans ce cas, tous les sommets sont atteints...
-
Exercices 2
On peut recommencer, avec des losanges, ce que l'on a fait précédemment avec des triangles ; on obtient : Les dimensions supérieures dépassent le plateau ; elles sont donc à essayer hors-plateau : L(7) d'aire 98 et L(8) d'aire 128 ... L(9) a une aire...
-
Stelo
Si vous avez Polyspidrons, vous pouvez prélever les pièces colorées en jaune ci-dessus (qui sont en fait tous les trispidrons sans tête) pour réaliser les figures de Stelo : vers Stelo Il est à remarquer que les 12 pièces de Stelo recouvrent une aire...
-
Ekzercoj 2
Per romboj, oni povas refari tion, kion oni faris antaŭe per trianguloj ; oni obtenas : aire = areo ( rombo = losange franclingve ) La pli altaj dimensionoj eliras el la plato ; do necesas provi ilin ekster la plato : L(7) je areo 98 kaj L(8) je areo...
-
Polyspidrons
To have Polyspidrons ™, go to Kadon enterprises (If you want that all the pieces of your Polyspidrons have the same colour, specify that during the order) Since the 80th years I worked about polyforms called now polyiamonds, and about polymultiforms,...
-
Stelo
Se vi havas Polyspidrons, vi povas preni la pecojn ĉisupre flavkoloritajn (kiuj estas ĉiuj trispidronoj sen kapo) por estigi la figurojn de Stelo : al Stelo Oni povas noti, ke la 12 pecoj de Stelo kovras areon je 36 ; se oni duobligas ĝiajn dimensiojn,...
-
Ekzercoj 3
Nun ni estigu sesangulojn, daŭre kun la samaj skribaj konvencioj ; jen ili : aire = areo ( sesangulo = hexagone franclingve ) Ekster la plato, H(5) havus areon je 150 : kun truo je 6, same kiel H(1), oni obtenas HT(5/1), kiu estas defio 003 (kies solvon...
-
Exercices
Parmi les 54 pièces de Polyspidrons, il y a 2 triangles équilatéraux (en bleu et rouge ci-dessous) : Si on prend pour unité de longueur le côté du petit triangle, le côté du grand mesure ; par commodité, dans la suite, je noterai r ce nombre. Si on prend...
-
Solutions
Voici quelques formes d'aire 144 avec leurs solutions : R(4r,9) : Suivant la pièce (ou les pièces) qui reste(nt), on notera la solution en utilisant les codes suivants : Pour le rectangle R(4r,9) ci-dessus, on dira que la solution montrée est une solution...
-
Exercices 3
Réalisons des hexagones à présent, toujours avec les mêmes conventions d'écriture ; nous avons : Hors plateau, H(5) aurait une aire de 150 : avec un trou de 6, fait par H(1), on obtient HT(5/1) qui n'est autre que le Challenge 003 (solution affichée le...
-
Stelo
If you have Polyspidrons, you can take off the pieces yellow-coloured above (which are all the trispidrons without head) to realize the shapes of Stelo : to Stelo We can notice that the 12 pieces of Stelo cover an area 36 ; if we double its dimensions,...
-
Exercises
Among the 54 pieces of Polyspidrons, there are 2 equilateral triangles (blue and red below) : If we take the length of the side of the little triangle as unit, the length of the side of the big one is ; for convenience, afterwards, I shall note r this...
-
Challenges
03/04/2007 : 10/04/2007 : 17/04/2007 : 24/04/2007 : 01/05/2007 : 01/10/2007 : 05/10/2007 : 10/10/2007 : 15/10/2007 : 21/10/2007 : Nouveau super-défi * New super-challenge * Nova defiego * * dédié à Ernest FERROUL dont la vie fut liée à la vigne, surtout...
-
Exercises 3
Let us make hexagons now, always with the same script conventions ; we have : aire = area Out of the tray, H(5) would have area 150 : with a hole with area 6, as H(1), we obtain HT(5/1) which is challenge 003 (solution put on 12/11/2007). We have also...
-
Challenges
Since 19/09/2006 I put on these pages challenges ; they are shapes to realize with the pieces of Polyspidrons. Most of them have area 144 ; those, which haven't area 144, are pointed (see Explanations). If you find solution of one of the challenges, I...
-
Polyspidrons
On peut trouver Polyspidrons™ chez Kadon Enterprises (Kadon Enterprises propose Polyspidrons en version multicolore ; si vous désirez avoir Polyspidrons avec une seule couleur pour toutes les pièces, comme ci-dessous, il faut le préciser à la commande)...
-
Solvoj
Jen kelkaj formoj je areo 144 kun iliaj solvoj : R(4r,9) : Laŭ la peco ( aŭ la pecoj ), kiu(j) restas, oni notos la solvon uzante la jenajn kodojn : Por la ĉi-supra ortangulo R(4r,9), oni diras, ke la vidata solvo estas a2-solvo ; do oni povas provi trovi...
-
Spidron et triangle équilatéral
Voici une manière de construire un spidron * (ou plus précisément un demi-spidron) : * Si vous utilisez les images ci-dessous, rappelez que le Spidron est une création de Dániel Erdély. (Pour un diaporama, cliquez ici) Partons d'un triangle équilatéral...
-
Spidrons d'hexagone
Voici une autre manière de construire un spidron* (ou plus exactement un demi-spidron) : * Le Spidron est une création de Dániel Erdély. (Pour un diaporama, cliquez ici): Partons d'un hexagone : Relions ses sommets (en sautant un sommet à chaque fois)...
-
Solutions
Here are some shapes with area 144 and their solutions : R(4r,9) : According to the piece(s) which rest(s), we indicate the solution using the following codes : For the above rectangle R(4r,9), we say that the solution is a a2-solution ; so we can try...
-
Bonvenon
jacques.ferroul@laposte.net 05/02 /2013 ** puzzles, as if they rain down !!! ** kaprompiloj, kvazaŭ ili plovus !!! Bienvenue ! Welcome ! Bonvenon ! Explications Explanations Klarigoj Challenges 113 Challenges ( 139 - 26 ) Defioj Solutions Solutions Solvoj...
-
Spidrons d'octogone
(Pour un diaporama, cliquez ici) Reprenons la 2ème méthode de construction d'un spidron mais, cette fois, à partir d'un octogone : Relions ses sommets (en sautant un sommet à chaque fois) : Relions ses autres sommets : Isolons l'octogone obtenu à l'intérieur...
-
Ekzercoj
Inter la 54 pecoj de Polyspidrons, estas 2 egallateraj trianguloj (blua kaj ruĝa ĉisube ) : Se oni prenas la longon de latero de la eta triangulo kiel unito, latero de la granda estas longa je ; por simpligi, ekde nun, mi notos r tiun nombron. Se oni...
-
Exercises 2
We can make with diamonds what we made previously with triangles ; we obtain : aire = area ( diamond = losange in french ) The higher sizes jut out the tray ; we have to try them out of the tray : L(7) with area 98 and L(8) with area 128 ... L(9) has...
-
Challenges
Depuis le 19/09/2006, j'ai mis dans ces pages des défis ; ce sont des silhouettes à reconstituer avec les pièces de Polyspidrons. La plupart ont une aire de 144 ; ceux qui n'ont pas une aire de 144 sont indiqués (voir Explications). Si vous trouvez une...